ALLOWING FOR THE INJECTION OF GAS WHEN
CALCULATING SUPERSONIC FLOW AROUND A CONE
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Supersouic flow around a cone is analyzed with due allowance for injection affects. Equations
are obtained for the pressure at the contact surface and also the position of the condensation
jump (shock wave) and its departure from the vertex of the cone. Some numerical results of
the calculations are presented.

A theoretical solution to the problem of intensive uniform injection through the walls of a porous cone
of infinite length was given in [1, 2] on the assumption of a detached boundary layer and supersonic flow
around the latter. The solution was reduced to a determination of the position of the contact surface separat-
ing the flow of injected gas from the outer conical flow, The a priori assumption [1, 2] as to the rectilinear
nature of the separating surface of the current agrees with experiment [3, 4], and for subsonic injection
normal to the surface of the cone determines its angle of inclination in relation to the aperture angle of the
cone in the form
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Subsequently, on the basis of his own experiments [4] and those of Otis [5], Bott showed that the position of
the contact surface depended, not only on the aperture angle of the cone, but also on the mass flow and
molecular weight of the injected gas, the temperature of the wall of the cone, and the pressure at the contact
surface, The latter parameter in turn depends on the conditions of the incident flow, the aperture angle of
the condensation jump, and the effects of viscous interaction.

The present article constitutes a development of the earlier papers. We shall show how to determine
the pressure at the contact surface, the aperture angle of the shock wave, and its departure from the vertex
of the cone on the basis of certain experimental constants relating to the injection of gas into a supersonic
flow and the results of the constant-density theory [6, 7].

Let us consider an approximate solution to the problem of intense normal injection into a supersonic
flow at the wall of the cone, starting from semiempirical data based on the theorem of the momentum incre-
ment, as applied to an arbitrary volume OBC of the internal flow (Fig. 1), In this analysis the control sur-
face of the volume should be formed by the wall of the cone OB, the contact surface OC, and a surface ob-
tained by rotating the element BC perpendicular to the wall around the axis of the cone. For uniform injec-
tion and a rectilinear separating surface of the current, the gas-dynamic parameters ps, pgs, vs, Tg and
P& + aAg are independent of r and may be taken as constant. The pressure, density, and velocity of flow in
the section BC vary with the polar angle 6. However, if we consider simply the average values of these
and regard the flow in the range 6-(6 + A6) as subsonic and adiabatic, we may easily derive the following
from the equation of continuity and the equation of the change in momentum in the volume OBC in the direc~
tion of the cone wall
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Changes in ¢ may cause changes in ¢(1—¢). Experimental results [5] relating to the injection of gas
into a supersonic flow for different Reynolds numbers per unit length of the cone, expressed in coordinates
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of (2tgAd + tg?40/tgd) and m/pg Ag(RT6/1)1/2, show that o(1—¢) remains constant over a wide range of
variation of the flows of injected gas. ’

According to experiment, the function ¢(1—¢) = 0.152 and almost corresponds to its mean value of

1
g ¢(l—g¢)de =0.167 as ¢ varies from 0 to 1,
0

Let us introduce the notation
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From Eq. (2) we find
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Since n > 0, we reject the second root as physically unrealistic, i.e., we have finally
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An increase or decrease in the angle A6 of inclination of the contact surface to the surface of the cone
for fixed angles 6 may be explained as being due to a decrease or increase in the parameter n. For large
7 the flow model is such that the effects of mass transfer appear in the boundary layer. For n of the order
of 0.5-1.0 the contact surface breaks up [4, 5], and this corresponds to the onset of large-scale mixing
between the injected gas and the gas of the external conical flow,

For these limiting cases, on the assumption of a thin cone, we easily derive the following from Eq. (4):
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Here C; = (R/44C) /2 C, = (R/uC)1/4 are constants for any specified injected gas.

In the problem of intensive injection, a certain difficulty arises in determining the pressure pg + AB
since this is related to the parameter 7, Let us find the value of this for an external flow corresponding to
hypersonic velocities. According to the assumption that a constant density exists behind the shock wave
and that a e <1, we have [6]
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The pressure at the contact surface (without allowing for viscous interaction) depends on the pressure and
Mach number of the unperturbed flow and the position of the shock wave, which is in turn associated with
the injection parameters.

In [7] the pressure coefficient behind a conical shock wave was shown to be independent of the Mach
number of the incident flow. In relation fo our present problem the resulis of [7] may be written:
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Here 6 and A0 are taken in radians. The increment to the angle Af associated with injection may be deter-
mined from Eq. (4), or in limiting cases from Eqs. (5) and (6). For injection in which the flow is described
by Eqs. (5) and (8), the latter result may be written in the form

sin?f = (8 + C1Té/2mpEﬁAe)l'87 + M2, (9)
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Clearly for large n the value of CiT})/ m(ps 4 Ap® 1<« 1, and to a first approximation it is sufficient that
Eq. (9) should be satisfied in the form
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The following condition follows directly from (7) and (11)
!
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This expression agrees with the theory of constant density. For the value of n — « the expression takes
the asymptotic form

H—(l—l,—

Mo 8"y +7) + 4 +5y+4 (13)
4(v+1)

Ps_

Py
On comparing the calculated data (without injection) based on Eq. (13) and the exact values given in

[8], we find good agreement for Ms > 3. The close agreement thus obtained between these resulfs, even

for fairly small values of Mw, explains the agreement between Eq. (12) and experimental data for any
values of né6 > 1.1.

For small values of 116 we obtain the following from (7) and (10) after some simple transformations

’
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For known pw, Mw, Cy, m, 6, Ty the pressure at the contact surface may be determined from this rela-
tionship by trial and error.

It is easy to show that, for the case M, > 1 and n =1, the first term on the right-hand side of Eq.
{(14) is of the order of M%6. Hence for M%6> 1 we obtain the following approximate result from (14):
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Equations (12) and (14), together with Egs. (4) and (8), determine the aperture angle of the shock wave
when gas is injected into the conical axially-symmetrical flow,

We may also demonstrate the effect of the parameter 7 on the departure of the jump (shock wave)
from the vertex of the cone, applying the approximations of the theory of constant density [6] to the external
conical flow. Then the maximum value of the angle of the cone with the associated jump for subsonic in-
jection is determined by the equation
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The departure of the shock wave from the nose of the cone given by Eq. (16) for the corresponding
O is strictly valid under hypersonic conditions.

The combination of Eqs. (8) and (16) and the equation for ¢ yields the result:
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The angles 6,, may be found for various numbers M,, and parameters n by trial and error from Eqgs.
(17) and (4). The problem of finding 6., is simplified if the initial angular increment A6 in Eq. (17) is

specified for the limiting cases of injection, i.e.,
1
7
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Fig. 1. Flow pattern around a cone due to a supersonic flow of gas and injection nor-
mal to the surface of the wall: I) shock wave; I) surface of separation; TIII) wall of
porous cone,

Fig. 2. Semiaperture angle of the cone éy corresponding to the position of the depar-
ture of the jump (shock wave) from the vertex of the cone in relation to M. and 1.

the argument respectively taking the values '
Ntg 8> landntgd << L.

The results of some calculations based on Egs. (17) and (4) are presented in Fig. 2 in the form of a
dependence of 6y, on the Mach number M, of the unperturbed flow for six values of 1.

The broken line represents calculations corresponding to the exact solution of the case in which a
supersonic flow occurs around a cone without any injection.

We-see from Fig. 2 that, although the results for n = < were obtained under hypersonic conditions,
good agreement with the exact solution (broken line) is achieved even for fairly small supersonic My, num-
bers. This agreement should clearly also apply to the case of n < «,

Finally we should point out that our analysig of the theoretical solution of [1, 2] corresponds to injec-
tion with n6<« 1 and n = 0.1-0.3, This reduces the approximate relation (4) to Eq, (1) for

N @8 ‘ , (18)
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The latter equation (18) may be obtained on the basis of [9] when Eq. (1) is expressed in series in powers
of cos (0 + Af), neglecting terms in the expansion of cos (6 + A8) of the fifth and higher orders,

NOTATION

U is the velocity of the unperturbed flow;

B is the semiaperture angle between the directions of the jump (shock wave) and the unperturbed
flow; : '

6 is the semiaperture angle of the cone;

(6 + A0) is the semiaperture angle of the surface separating the layer of injected gas from the external
flow;

Vg, ug arethe velocity components in the directions 6 and r;
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r, 0
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R =8.314-10° J/deg K - mole
Y =Cp/Cy;
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Subscripts

8,0, 6 + AG,» respectively represent conditions on the cone, on the ray ¢, en the surface of separation

are the polar coordinates;

are the density, pressure, and temperature;
is themolecular weight of the injected gas;
is the gas constant;

is the average pressure in the section BC (Fig. 1);

is the ratio of the densities in front of and behind the shock wave.

’

and in the unperturbed flow;
m corresponds to the condition in which the jump (shock wave) deviates from the noise of

the cone,

W 00 =3O Ul WD
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